Home
Class 12
MATHS
" 4.Prove that "(2sqrt(3)+3)sin x+2sqrt(...

" 4.Prove that "(2sqrt(3)+3)sin x+2sqrt(3)cos x" lies between "-(2sqrt(3)+sqrt(15))" and "(2sqrt(3)+sqrt(15))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (2sqrt3 + 3) sinx +2sqrt3 cos x lies between -(2sqrt3 +sqrt15) and (2sqrt3+ sqrt15) ,

Divide 8sqrt(15) and 2sqrt(3) .

2{(sqrt(3)+2)sin x+2cos x} lies in the

(15-2sqrt(566))*(sqrt(7)-2sqrt(2)3)

Prove that sin15^@ = (sqrt3-1)/(2sqrt2)

Prove that: sin15^(@)=(sqrt(3)-1)/(2sqrt(2))

Prove that: sin15^(@)=(sqrt(3)-1)/(2sqrt(2))

(sqrt(15)+sqrt(35)+sqrt(21)+5)/(sqrt(3)+2sqrt(5)+sqrt(7))=?

f(x)=x^(2)-2sqrt(sin*sqrt(3)-sin sqrt(2))x-(cos sqrt(3)-cos sqrt(2))