Home
Class 12
MATHS
" Lt "sum(n rarr n)^(3n)(n)/(r^(2)-n^(2)...

" Lt "sum_(n rarr n)^(3n)(n)/(r^(2)-n^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n to oo) " " sum_(r=2n+1)^(3n) (n)/(r^(2)-n^(2)) is equal to

lim_(n rarr oo)sum_(r=2n+1)^(3n)(n)/(r^(2)-n^(2)) is equal to

T_(n) =sum _( r =2n )^(3n-1) (r)/(r ^(2) +n ^(2)), S_(n) = sum _(r =2n+1)^(3n) (r )/(r ^(2) + n ^(2)), then AA n in {1,2,3...}:

Let T_(n) = sum_(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S_(n) = sum_(r=0)^(n)(n)/(r^(2)-2r.n+2n^(2)) then

Find Lt(n rarr oo) sum_(r=0)^(n-1)(1)/(sqrt(n^(2) - r^(2))

Lt_(n rarr oo) sum_(r=1)^(n)[(1)/(sqrt(4n^(2) - r^(2)))]

Lt_(ntooo)sum_(r=0)^(n-1)(n)/(n^(2)+r^(2))=