Home
Class 12
MATHS
f(x)={[(del x)/(2x^(2)+|x|),x!=0],[1,x=0...

f(x)={[(del x)/(2x^(2)+|x|),x!=0],[1,x=0]" then "f(x)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) ={{:((x)/(2x^(2)+|x|),xne0),( 1, x=0):} then f(x) is

if f(x)=e^(-(1)/(x^(2))),x>0 and f(x)=0,x<=0 then f(x) is

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x)/(x^(2)) , for x!=0 , then f(0)=

The function f(x)=x cos((1)/(x^(2))) for x!=0,f(0)=1 then at x=0,f(x) is

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

A function y=f(x) satisfies (x+1)f'(x)-2(x^(2)+x)f(x)=((e^(x))^(2))/((x+1)),AA x>1 If f(0)=5, then f(x) is

If f(x)=(1-cos2x)/(x^(2))quad , x!=0 and f(x) is continuous at x=0 ,then f(0)=?