Home
Class 11
MATHS
" 9."log(x^(2)+x+1)/(x^(2)-x+1)...

" 9."log(x^(2)+x+1)/(x^(2)-x+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

The domian of definition of f (x) = log _((x ^(2) -x+1)) (2x ^(2)-7x+9) is :

The domian of definition of f (x) = log _((x ^(2) -x+1)) (2x ^(2)-7x+9) is :

lim_(x rarr1)(x^(3)-x^(2)log x+log x-1)/(x^(2)-1) =

The domain of f(x)=(log(sin^(-1)sqrt(x^(2)+x+1)))/(log(x^(2)-x+1)) is

The domain of f(x)=(log(sin^(-1)sqrt(x^(2)+x+1)))/(log(x^(2)-x+1)) is

int (log x)/(x^(2))dx is equal to a) (log x)/(x) + (1)/(x^(2)) +C b) -(log x)/(x) + (2)/(x) + C c) -(log x)/(x) - (1)/(2x) + C d) -(log x)/(x) - (1)/(x) + C

The solution set of ((x^(2)+x+1)(x^(2))log(x))/((x+1)(x+9))lt 0 is

The solution set of ((x^(2)+x+1)(x^(2))log(x))/((x+1)(x+9))lt 0 is

Fill in the blanks from the given options : (1)/(2) , 9 (6x - 9) (3x^(2) - 9x + 5)^(8), 49, -2, (1)/(2) [log(sin x)]^(2) + c, (1)/(x), 10 , onto int (log(sinx))/(tan x) dx = ………

Fill in the blanks from the given options : (1)/(2) , 9 (6x - 9) (3x^(2) - 9x + 5)^(8), 49, -2, (1)/(2) [log(sin x)]^(2) + c, (1)/(x), 10 , onto (d)/(dx) [3x^(2) - 9x+5]^(9) = ………