Home
Class 12
MATHS
If x=sint,y=sinKt then show that (1-x^(2...

If `x=sint,y=sinKt` then show that `(1-x^(2))y_2-xy_(1)+K^(2)y=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sint and y=sinmt show that (1-x^2)y_2-xy_1+m^2y=0

If y=sin^-1x , show that, (1-x^2)y_2-xy_1=0 .

If x=sin((1)/(a)log y), show that (1-x^(2))y_(2)-xy_(1)-a^(2)y=0

If x=sin((1)/(a)log y), show that (1-x^(2))y_(2)-xy_(1)-a^(2)y=0

If y =e ^( m Cos ^(-1)x) then show that (1- x^(2)) y _(2) - xy_(1) -m^(2) y =0.

If y=cos(m sin^(-1)x), show that (1-x^(2))y_(2)-xy_(1)+m^(2)y=0

" 1(a) If "y=e^(a sin^(-1)x)" ,show that "(1-x^(2))y_(2)-xy_(1)-a^(2)y=0

if y = sin^-1x , show that (1-x^2) y_2 = xy_1

If y=e^(acos^-1x) , then show that (1-x^2)y_2-xy_1-a^2y=0