Home
Class 12
MATHS
If bar(a),bar(b),bar(c) are non-zero, no...

If `bar(a),bar(b),bar(c)` are non-zero, non -coplanar vectors, then show that the vectors `2bar(a)-5bar(b)+2bar(c),bar(a)+5bar(b)-6bar(c)and3bar(a)-4bar(c)` are coplanar.

Promotional Banner

Similar Questions

Explore conceptually related problems

i) If bar(a), bar(b), bar(c) are non coplanar vectors, then prove that the vectors 5bar(a)-6bar(b)+7bar(c), 7bar(a)-8bar(b)+9bar(c) and bar(a)-3bar(b)+5bar(c) are coplanar.

If bar(a),bar(b),bar(c) are non - coplanar vectors, then show the vectors -bar(a)+3bar(b)-5bar(c),-bar(a)+bar(b)+bar(c) and 2bar(a)-3bar(b)+bar(c) are coplanar.

If bar(a), bar(b), bar(c) are non coplanar, show that the vectors bar(a)+2bar(b)-bar(c), 2bar(a)-3bar(b)+2bar(c), 4bar(a)+bar(b)+3bar(c) are linearly independent.

The points 2bar(a)+3bar(b)+bar(c), bar(a)+bar(b), 6bar(a)+11bar(b)+5bar(c) are

If bar(a) , bar(b) , bar(c) are non -zero,non - coplanar vectors and bar(a)+bar(b)+bar(c) , -a+8bar(b)+7bar(c) , 5bar(a)+lambdabar(b)-3bar(c) are coplanar,then the value of |lambda| is

If bar(a), bar(b), bar(c) are linearly independent vectors, then show that bar(a)-3bar(b)+2bar(c), 2bar(a)-4bar(b)-bar(c), 3bar(a)+2bar(b)-bar(c) are linearly independent.

If bar(a), bar(b), bar(c) are non coplanar then the vectors bar(a)-2bar(b)+3bar(c), -2bar(a)+3bar(b)-4bar(c), bar(a)-3bar(b)+5bar(c) are

If bar(a),bar(b),bar(c) are non-coplanar vectors.Prove that the four points -bar(a)+4bar(b)-3bar(c) , 3bar(a)+2bar(b)-5bar(c) , -3bar(a)+8bar(b)-5bar(c) , -3bar(a)+2bar(b)+bar(c) are coplanar.

If bar(a), bar(b), bar(c) are non coplanar vectors and lambda is a real number, then the vectors bar(a)+2bar(b)+3bar(c), lambdabar(b)+4bar(c) and (2lambda-1)bar(c) are non-coplanar for