Home
Class 10
MATHS
If the polynomial f(x)=a x^3+b x-c is di...

If the polynomial `f(x)=a x^3+b x-c` is divisible by the polynomial `g(x)=x^2+b x+c` , then `a b=` (a) `1` (b) `1/c` (c) `-1` (d) `-1/c`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the polynomial f(x)=ax^(3)+bx-c is divisible by the polynomial g(x)=x^(2)+bx+c, then ab=( a) 1 (b) (1)/(c) (c) -1(d)-(1)/(c)

If the polynomial f(x) = ax^(3) + bx - c is divisible by the polynomial g(x) = x^(2) + bx + c then ab = …………..

The polynomial f(x)=ax^(3)+bx-c is divisible by the polynomials g(x)=x^(2)+bx+c,c!=0, if ac=lambda b then determine lambda.

If alpha,\ beta are the zeros of polynomial f(x)=x^2-p(x+1)-c , then (alpha+1)(beta+1)= (a) c-1 (b) 1-c (c) c (d) 1+c

If alpha,beta are the zeros of polynomial f(x)=x^(2)-p(x+1)-c, then (alpha+1)(beta+1)=(a)c-1(b)1-c(c)c(d)1+c

If alpha,\ beta,\ gamma are the zeros of the polynomial f(x)=a x^3+b x^2+c x+d , then 1/alpha+1/beta+1/gamma= (a) b/d (b) c/d (c) -c/d (d) c/a

If alpha,\ beta are the zeros of the polynomial f(x)=x^2-p(x+1)-c such that (alpha+1)(beta+1)=0 , then c= (a) 1 (b) 0 (c) -1 (d) 2

Let f(x) be a polynomial such that f(-1/2)=0, then a factor of f(x) is:? (a) 2x-1 (b) 2x+1 (c) x-1 (d) x+1

If f(x) and g(x) are two polynomials such that the polynomial h(x)=xf(x^(3))+x^(2)g(x^(6)) is divisible by x^(2)+x+1, then ( a )f(1)=g(1) (b) f(1)=1g(1)( ) h(1)=0 (d) all of these

If a b c = 0, then ({(x^a)^b}^c)/({(x^b)^c}^a) = (a)3 (b) 0 (c) -1 (d) 1