Home
Class 12
MATHS
Let A be a 3xx3 matrix satisfying A^3=...

Let `A` be a `3xx3` matrix satisfying `A^3=0` , then which of the following statement(s) are true (a)`|A^2+A+I|!=0` (b) `|A^2-A+O|=0` (c)`|A^2+A+I|=0` (d) `|A^2-A+I|!=0`

Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    RESONANCE DPP|Exercise All Questions|3135 Videos
  • RELATIONS AND FUNCTIONS XII

    RESONANCE DPP|Exercise All Questions|26 Videos

Similar Questions

Explore conceptually related problems

Let M be a 3xx3 matrix satisfying M^(3)=0 . Then which of the following statement(s) are true:

Let A be a 3xx3 matrix such that A^(2)-5A+7I=0 then which of the statements is true

14.Let M be a 3times3 matrix satisfying M^(3)=0 .Then which of the following is TRUE? (|A| represent determinant of A ). a) If |M+I|=1 then |M^(2)-M+I|=1 b) If |M+I|=1 then |M^(2)-M+1|=0 c) If |M-I|=1 then |M^(2)+M+I|=1 d) If |M-I|=1 then |M^(2)+M+I|=0

Let A be a square matrix satisfying A^(2)+5A+5I=0 . The inverse of A+2I is equal to :

For the matrix A=[(1,1,0),(1,2,1),(2,1,0)] which of the following is correct? (A) A^3+3A^2-I=0 (B) A^3-3A^2-I=0 (C) A^3+2A^2-I=0 (D) A^3-+A^2-+I=0

Which of the following statements are correct: (i) {phi}={0} (ii) {a,b,c}={b,a,c} (iii) {1,2,{3}}={{1},2.3}

A square non-singular matrix A satisfies A^2-A+2I=0," then "A^(-1) =