Home
Class 11
MATHS
1+x/a1+(x(x+a1))/(a1 a2)+............+(x...

`1+x/a_1+(x(x+a_1))/(a_1 a_2)+............+(x(x+a_1)(x+a_2) (x+a_(n-1)))/(a_1a_2 a_n)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

1 + (x)/( a_1) + ( x( x+a_1) )/( a_1 a_2 ) + .... + ( x ( x+a_1) (x+ a_2)... ( x+a_(n-1) ) )/( a_1 a_2 ..... a_n)=

If a_1, a_2,a_3,..........., a_n be an A.P. of non-zero terms, prove that : 1/(a_1 a_2)+1/(a_2 a_3)+ ............. + 1/(a_(n-1) a_n)= (n-1)/(a_1 a_n) .

If the nonzero numbers a_1,a_2,a_3,....,a_n are in AP, prove that 1/(a_1a_2a_3)+1/(a_2a_3a_4)+...+1/(a_(n-2)a_(n-1)a_n)=1/(2(a_2-a_1))(1/(a_1a_2)-1/(a_(n-1)a_n)) .

If a_1, a_2, ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)++(a_(n-1))/(a_n)+(a_n)/(a_1)> n

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

Let a_1,a_2…….a_n be fixed real number such that f(x)=(x-a_1)(x-a_2)……….(x-a_n) what lim_(x to a) f(x) For a ne a_1,a_2……a_n compute lim_(x to 0) f(x)

if f(x) = (x - a_1) (x - a_2) .....(x - a_n) then find the value of lim_(x to a_1) f(x)

If a_1, a_2, a_3, ,a_(2n+1) are in A.P., then (a_(2n+1)-a_1)/(a_(2n+1)+a_1)+(a_(2n)-a_2)/(a_(2n)+a_2)++(a_(n+2)-a_n)/(a_(n+2)+a_n) is equal to a. (n(n+1))/2xx(a_2-a_1)/(a_(n+1)) b. (n(n+1))/2 c. (n+1)(a_2-a_1) d. none of these