Home
Class 12
MATHS
Prove that tan^(-1)((cosx-sinx)/(cosx+si...

Prove that `tan^(-1)((cosx-sinx)/(cosx+sinx))=(pi/4-x), x lt pi`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that tan^(-1)[(cosx+sinx)/(cosx-sinx)]=(pi)/(4)+x .

tan^(-1) ((cosx - sinx)/(cosx + sinx)) , 0< x < pi

Prove that tan^(-1)((cosx)/(1+sinx))=(pi/4-x/2)

Prove that tan^(-1)((cosx)/(1+sinx))=pi/4-x/2x in [-pi/2,pi/2]

Prove that tan^-1((cosx)/(1+sinx))=pi/4-x/2,\ x in (-pi/2,pi/2)

Write the following function in the simplest form: tan^(-1)((cosx-sinx)/(cosx+sinx)), x < pi

Prove that : tan^-1((cosx)/(1+sinx)) = pi/4 - x/2, x in (-pi/2,pi/2)

Prove that: tan^(-1){(a cosx-b sinx)/(b cosx+a sinx)} =tan^(-1)((a)/(b))-x

Write the following function in the simplest form : tan^(-1)((cosx-sinx)/(cosx+sinx)),(-pi)/4ltxlt(3pi)/4