Home
Class 12
MATHS
[*|x^(2)-x+1quad x-1|],[(ii)]|...

[*|x^(2)-x+1quad x-1|],[(ii)]|

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: (i) |{:(6, -3), (7, -2):}| " " (ii) |{:(x^(2)-x +1, x-1),(x+1, x+1):}|

In each of the following determine whether the given values are solution of the given equation or not: x^(2)-x+1=0,x=1,x=-1( ii) x^(2)+sqrt(2)x-4=0,x=sqrt(2),x=-2sqrt(2)

BY Remainder theorem , find the remainder when p(x) is divided by g(x) (i) p(x) =x^(3)-2x^(2)-4x-1, g(x)=x+1 (ii) p(x) =x^(3)-3x^(2)+4x+50, g(x) =x-3

BY Remainder theorem , find the remainder when p(x) is divided by g(x) (i) p(x) =x^(3)-2x^(2)-4x-1, g(x)=x+1 (ii) p(x) =x^(3)-3x^(2)+4x+50, g(x) =x-3

Evaluate: (i) (x^(2)+3x-1)/((x+1)^(2))dx (ii) int(2x-1)/((x-1)^(2))dx

Determine whether the given values are the solution of the given equation ( i ) 3x^(2)-2x-1=0;x=1 (ii) x^(2)-x+1=0;x=1;x=-1

In each of the following determine whether the given values are solution of the given equation or not: (i) x^2-x+1=0,\ \ x=1,\ x=-1 (ii) x^2+sqrt(2)x-4=0,\ \ x=sqrt(2),\ \ x=-2sqrt(2)

In each of the following determine whether the given values are solution of the given equation or not: 3x^(2)-2x-1=0,x=1( ii) 6x^(2)-x-2=0,x=-1/2,x=2/3

Use the factor theorem, to determine whether g(x) is a factor of p(x) in each of the following cases : (i) p(x)=2x^(3)+x^(2)-2x-1,g(x)=x+1 (ii) p(x)=x^(3)+3x^(2)+3x+1,g(x)=x+2 (iii) p(x)=x^(3)-4x^(2)+x+6,g(x)=x-3

If x + (1)/(x) = 5 find the values of (i) x^(2) + (1)/(x^(2)) and (ii) x^(4) + (1)/(x^(4))