Home
Class 12
MATHS
[" Show that the lines "(x+3)/(-3)=(y-1)...

[" Show that the lines "(x+3)/(-3)=(y-1)/(1)=(z-5)/(5)" and "(x+1)/(-1)=(y-2)/(2)=(z-5)/(5)" are "],[" coplanar."]

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the lines (x+3)/(-3)=(y-1)/(1)=(z-5)/(5)(x+1)/(-1)=(y-2)/(2)=(z-5)/(5) are coplanar.

Show that the lines (x+3)/(-3)=(y-1)/(1)=(z-5)/(5) and (x+1)/(-1)=(y-2)/(2)=(z-5)/(5) and are coplanar.Also,find the equation of the plane containing these lines.

Prove that the lines (x + 3)/(-3) = (y - 1)/(1) = (z - 5)/(5) and (x + 1)/(-1) = (y - 2)/(2) = (z - 5)/(5) are coplanar.

Show that the lines (x+3)/(-3) = y - 1 = (z-5)/(5) and (x+1)/(-1) = (y-2)/(2) = (z-5)/(5) are coplanar. Also find their point of intersection.

The lines (x-2)/(1)=(y-3)/(2)=(z-4)/(3) and (x-1)/(-5)=(y-2)/(1)=(z-1)/(1) are

If the lines (x + 3)/(-3) = (y -1)/(k) = (z - 5)/(5) and (x +1)/(-1) = (y -2)/(2) = (z -5)/(5) are coplanar, then the value of k is

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar if __

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if