Home
Class 9
MATHS
Show that: 1/(1+x^(a-b))+1/(1+x^(b-a))=1...

Show that: `1/(1+x^(a-b))+1/(1+x^(b-a))=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 1/(1+x^(a-b))+1/(1+x^(b-a))=1

Prove that: (1)/(1+x^(a-b))+(1)/(1+x^(b-a))=1

Solve: 1/(1+x^(a-b))+1/(1+x^(b-a))=?

Show that: 1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+\ x^(c-b))+1/(1+x^(b-c)+\ x^(a-c))=1

Show that: (i)\ (x^(a-b))^(a+b)\ (x^(b-c))^(b+c)\ (x^(c-a))^(c+a)=1 (ii)\ {(x^(a-a^(-1)))^(1/(a-1))}^(a/(a+1))=x

Prove that (i) (a^(-1))/(a^(-1) + b^(-1)) + (a^(-1))/(a^(-1)-b^(-1)) = (2b^(2))/(b^(2) -a^(2)) (ii) (1)/(1+x^(a-b)) + (1)/(1+x^(b-a)) = 1

Simplify: (1)/(1+x^(a-b))+(1)/(1+x^(b-a))=1

Show that: (x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1{(x^(a)-a^((-1)))^((1)/(a-1))}^((a)/(a+1))=x

Show that: (1)/(1+x^(b-a)+x^(c-a))+(1)/(1+x^(a-b)+x^(c-b))+(1)/(1+x^(b-c)+x^(a-c))=1