Home
Class 12
MATHS
(dy)/(dx)=(y)/(x)+(phi((y)/(x)))/(phi'((...

(dy)/(dx)=(y)/(x)+(phi((y)/(x)))/(phi'((y)/(x)))?

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation (dy)/(dx) = (y)/(x) + (Phi((y)/(x)))/(Phi^(1)((y)/(x))) is

If y(dy)/(dx) = x[(y^(2))/(x^(2)) +(phi((y^(2))/(x^(2))))/(phi'((y^(2))/(x^(2))))], x ge 0, phi gt 0 , y(1) = -1, then phi((y^(2))/(4)) is equal to :

The solution of the differential equation y(dy)/(dx)=x[(y^(2))/(x^(2))+(phi((y^(2))/(x^(2))))/(phi'((y^(2))/(x^(2))))] is (where c is a constant)-

If y=(x)/(ln|cx|) , c in R is the general solution of the DE(dy)/(dx)=(y)/(x)+phi((x)/(y)) ,then phi(2)+phi'(2) is

The general solution of the differential equation yy' = x [ (y^(2))/(x^(2)) + (phi((y^(2))/(x^(2))))/(phi'((y^(2))/(x^(2))))] , where phi is an arbitrary function, is

if y+x(dy)/(dx)=x(phi(xy))/(phi'(xy)) then phi(xy) is

If x=f(t) and y=phi (t) then to prove that (dy)/(dx)=((dy)/(dt))/((dx)/(dt))=(phi'(t))/(f'(t)) .

if y+x(dy)/(dx)=x(phi(xy))/(phi'(xy)) then phi(xy) is equation to