Home
Class 12
MATHS
" (ii) "f(x)=sqrt(x^(2)-4),a=2,b=4...

" (ii) "f(x)=sqrt(x^(2)-4),a=2,b=4

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of c, of mean value theorem.when (a) f(x) = sqrt(x^(2)-4) , in the interval [2,4] (b) f(x) = 2x^(2) + 3x+ 4 in the interval [1,2] ( c) f(x) = x(x-1) in the interval [1,2].

f(x)=(sqrt(x^(2)+x-6))/(x^(2)-4)

If F:[1,x)rarr[2,x] is given by f(x)=x+(1)/(x), then f^(-1)(x) equals.(a) (x+sqrt(x^(2)-4))/(2)(b)(x)/(1+x^(2))(c)(x-sqrt(x^(2)-4))/(2) (d) 1+sqrt(x^(2)-4)

If f(x)=sqrt(x^(2)-4x+4)+6sqrt(x^(2)) is minimum then the number of values of x is:

Let f(x)+f(y)=f(x sqrt(1-y^(2))+y sqrt(1-x^(2)))[f(x) is not identically zerol.Then f(4x^(3)-3x)+3f(x)=0f(4x^(3)-3x)=3f(x)f(2x sqrt(1-x^(2))+2f(x)=0f(2x sqrt(1-x^(2))=2f(x)

If f(x)=(sqrt(x^(2)-4))/(x-4) , what are all the values of x for which f(x) is defined ?

The domain of f(x)=sqrt(({x}^(2)-3{x}+4)/({x}^(2)+3{x}+4))

Find the domain of f(x)=sqrt((4-x^(2))/([x]+2))

If F:[1,oo)vec 2,oo is given by f(x)=x+(1)/(x), then f^(-1)(x) equals.(x+sqrt(x^(2)-4))/(2)(b)(x)/(1+x^(2))(c)(x-sqrt(x^(2)-4))/(2)(d)1+sqrt(x^(2)-4)

If f(x)=sqrt(4-x^(2))+sqrt(x^(2)-1), then the maximum value of (f(x))^(2) is