Home
Class 11
MATHS
If f(x)=x^3+2x^2+3x+4 and g(x) is the in...

If `f(x)=x^3+2x^2+3x+4` and `g(x)` is the inverse of `f(x)` then `g^(prime)(4)` is equal to- `1/4` (b) 0 (c) `1/3` (d) 4

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    RESONANCE DPP|Exercise All Questions|1 Videos
  • LOGARITHM

    RESONANCE DPP|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^(3)+2x^(2)+3x+4 and g(x) is the inverse of f(x) then g'(4) is equal to a.(1)/(4) b.0 c.(1)/(3) d.4

If f(x)=x^(5)+2x^(3)+2x and g is the inverse of f then g'(-5) is equal to

Let f (x) = x^(3)+ 4x ^(2)+ 6x and g (x) be inverse then the vlaue of g' (-4):

If f(x)=x+tan x and g(x) is inverse of f(x) then g'(x) is equal to (1)(1)/(1+(g(x)-x)^(2))(2)(1)/(1-(g(x)-x)^(2))(1)/(2+(g(x)-x)^(2))(4)(1)/(2-(g(x)-x)^(2))

If f'(x)=4x^3-3x^2+2x+k and f(0)=1, f(1)=4 find f(x)

If f(x)=x+tan x and f(x) is inverse of g(x), then g'(x) is equal to (1)/(1+(g(x)-x)^(2)) (b) (1)/(1+(g(x)+x)^(2))(1)/(2-(g(x)-x)^(2)) (d) (1)/(2+(g(x)-x)^(2))

f(x)=x^(3)+4x^(2)-3x+10,g(x)=x+4

If g(x) is the inverse function of f(x) and f'(x)=(1)/(1+x^(4)) , then g'(x) is