Home
Class 11
MATHS
The fundamental period of the function y...

The fundamental period of the function `y=sin^2((sqrt(2)x+3)/(6pi))` is `lambdapi^2` then the value of `lambda/(sqrt(2))` is_____

Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    RESONANCE DPP|Exercise All Questions|10 Videos

Similar Questions

Explore conceptually related problems

The period of the function f(x)=sin((2x+3)/(6pi)) , is

If the fundamental period of function f(x)=sin x+cos(sqrt(4-a^(2)))x is 4 pi, then the value of a is/are

If the fundamental period of the function cos(cos x)+sin(cos x) is (k pi)/(2) ,then the value of k=

The fundamental period of the function f(x)=[x]+[x+(1)/(3)]+[x+(2)/(3)]-3x+sin3 pi x-1 is :-

If fundamental period of the functions f(x)=sin^(2)x+cos^(4)x and g(x)=cos(sin2x)+cos(cos2x) are lambda_(1) and lambda_(2) respectively then (lambda_(1))/(lambda_(2))=

Domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) for real valued of x, is

The greatest value of the function f(x)=(sin2x)/(sin(x+(pi)/(4))) on the interval (0,(pi)/(2)) is (1)/(sqrt(2))(b)sqrt(2)(c)1(d)-sqrt(2)

The maximum value of cos xsin x+sqrt(sin^(2)x+sin^(2)((pi)/(6))} is

The number of solutions of the equation sin((pi x)/(2sqrt(3)))=x^(2)-2sqrt(3)x+4