Home
Class 10
MATHS
निम्न आँकड़ो की माध्य ज्ञात कीजिए | ...

निम्न आँकड़ो की माध्य ज्ञात कीजिए |
`{:(आँकड़ो ": ",115,125,135,145,155,165,175,185,195),("बारम्बारता: ",6,25,48,72,116,60,38,22,3 ):}`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Compute the median from the following data: Mid-value: 115 125 135 145 155 165 175 185 195 Frequency: 6 25 48 72 116 60 38 22 3

Compute the median form the following data: Mid-value: 115 125 135 145 155 165 175 185 195 Frequency: 6 25 48 72 116 60 38 22 3

The median from the following data is {:("Mid-value","Frequency"),(115,6),(125,25),(135,48),(145,72),(155,116),(165,60),(175,38),(185,22),(195,3):}

The daily wages (in ₹) of 15 workers in a factory are given below : 195, 185, 145, 155, 135, 180, 175, 200, 150, 125, 190, 180, 170, 175, 190 Find the mean daily wage.

The daily wages (in ₹) of 15 workers in a factory are given below : 195, 185, 145, 155, 135, 180, 175, 200, 150, 125, 190, 180, 170, 175, 190 Find the range of the data.

Compute the modal value for the following frequency distribution: x : 95 105 115 125 135 145 155 165 175 y : 4 2 18 22 21 19 10 3 2

Compute the modal value for the following frequency distribution: x : 95 105 115 125 135 145 155 165 175 y : 4 2 18 22 21 19 10 3 2

Suppose the cube x^3""p x""+""q has three distinct real roots where p"">""0 and q"">""0 . Then which one of the following holds? (1) The cubic has minima at ( 2) (3)sqrt(( 4) (5) (6) p/( 7)3( 8) (9) (10))( 11) (12) (13) and maxima at ( 14) (15)-sqrt(( 16) (17) (18) p/( 19)3( 20) (21) (22))( 23) (24) (26) The cubic has minima at ( 27) (28)-sqrt(( 29) (30) (31) p/( 32)3( 33) (34) (35))( 36) (37) (38) and maxima at ( 39) (40)sqrt(( 41) (42) (43) p/( 44)3( 45) (46) (47))( 48) (49) (51) The cubic has minima at both ( 52) (53)sqrt(( 54) (55) (56) p/( 57)3( 58) (59) (60))( 61) (62) (63) and ( 64) (65)-sqrt(( 66) (67) (68) p/( 69)3( 70) (71) (72))( 73) (74) (76) The cubic has maxima at both ( 77) (78)sqrt(( 79) (80) (81) p/( 82)3( 83) (84) (85))( 86) (87) (88) and ( 89) (90)-sqrt(( 91) (92) (93) p/( 94)3( 95) (96) (97))( 98) (99) (100)