Home
Class 11
MATHS
sin^(4)x-cos^(4)x=sin^(2)x-cos^(2)x...

`sin^(4)x-cos^(4)x=sin^(2)x-cos^(2)x`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(4)x+cos^(4)x=1-2sin^(2)x cos^(2)x

Value of sin^(6)x+cos^(6)x+sin^(4)x+cos^(4)x+3+5sin^(2)x cos^(2)x is

The value of (cos^(4)x+cos^(2)xsin^(2)x+sin^(2)x)/(cos^(2)x+sin^(2)xcos^(2)x+sin^(4)x) is __________.

If sin^(4)2x+cos^(4)2x=sin2x*cos2x then x=

If solution of the equation sin^(4)2x+cos^(4)2x=sin2x*cos2x is of the form (n pi)/(2)+(pi)/(k),n in I, then value of k is

If sin^(2)4x+cos^(2)x=2sin4x cos^(2)x, then

Integrate sin x.sin2x.sin3x+sec^(2)x*cos^(2)2x+sin^(4)x*cos^(4)x

Evaluate: int(1)/(sin^(4)x+sin^(2)x cos^(2)x+cos^(4)x)dx

Solev (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

If f(x)= |{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x),(,sin^(2)x,cos^(2)x,1+4sin2x):}| then the maximum value of f(x) is