Home
Class 12
MATHS
The condition that the line y=mx+c may b...

The condition that the line y=mx+c may be a secant to the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The area of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 is

Find the condition that the line lx + my = n may be a normal to the ellipse x^(2)/(a^(2)) + y^(2)/b^(2) =1

The line y=mx+c is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, if c

The line lx+my=n is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, if

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

If the line y=mx+c is a tangent to the ellipse x^(2)+2y^(2)=4 ,

If y=mx+c is a tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then the point of contact is

if the line y=2x+c be a tangent to the ellipse (x^(2))/(8)+(y^(2))/(4)=1, then c is equal to

The line x=at^(2) meets the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 in the real points if