Home
Class 11
MATHS
If A+B+C=pi, Prove that tanA+tanB+tanC...

If `A+B+C=pi`, Prove that
`tanA+tanB+tanC=tanA.tanB.tanC`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , show that : tanA+tanB+tanC=tanA.tanB.tanC Hence. Deduce the value of : cotA.cotB+cotB.tanC+cotC.cotA

If tanA+tanB+tanC=tanAtanBtanC then

If tanA+tanB+tanC=tanAtanBtanC then

If tanA+tanB+tanC=tanA.tanB.tanC , then-

tanA +tanB + tanC = tanA tanB tanC if

tanA +tanB + tanC = tanA tanB tanC if

If A + B + C = π , Prove that tanB tanC+tanC tanA+tanA tanB=1+secA . sec B . secC.

In a DeltaABC , prove that : tanA+tanB+tanC= tanA tanB tanC

In a DeltaABC , prove that : tanA+tanB+tanC= tanA tanB tanC

In a DeltaABC , prove that : tanA+tanB+tanC= tanA tanB tanC