Home
Class 12
MATHS
Let m and M be respectively the minimum...

Let m and M be respectively the minimum and maximum values of `|{:(cos^(2) x , 1+sin^(2) x , sin 2x),(1+cos^(2)x, sin^(2)x, sin 2x),(cos^(2) x , sin^(2)x, 1+ sin2x):}|`
Then the ordered pari ( m , M) is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

Find maximum value of f(x)=|{:(1+sin^(2)x,cos^(2)x,4sin2x),(sin^(2)x,1+cos^(2)x,4sin2x),(sin^(2)x,cos^(2)x,1+4sin2x):}| .

Solve: [[cos^(2)x, sin^(2)x],[sin^(2)x, cos^(2)x]]+[[sin^(2)x, cos^(2)x],[cos^(2)x, sin^(2)x]]

If maximum and minimum values of the determinant |{:(1 + cos^(2)x , sin^(2) x, cos 2x),(cos^(2) x , 1 + sin^(2)x, cos 2x),(cos^(2) x , sin^(2) x , 1 + cos 2 x):}| are alpha and beta then

Simplify [{:(cos^(2)x,sin^(2)x),(sin^(2)x,cos^(2)x):}]+[{:(sin^(2)x,cos^(2)x),(cos^(2)x,sin^(2)x):}]

The maximum value of f(x)=|(sin^(2)x,1+cos^(2)x,cos2x),(1+sin^(2)x,cos^(2)x,cos2x),(sin^(2)x,cos^(2)x,sin2x)|,x inR is :

(cos^(3) x- sin^(2) x)/(cos x - sin x)=(1)/(2) (2 + sin 2x)

The value of (cos^(4)x+cos^(2)x sin^(2) x + sin^(2)x)/(cos^(2)x+ sin^(2) x cos^(2) x + sin^(4)x) is ____________

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then