Home
Class 11
MATHS
If characteristic of log(10)x is 3, find...

If characteristic of `log_(10)x` is `3`, find the number of digits in `x`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Comprehension 3 If P is the non negative characteristic of (log)_(10)N , the number of significant digit in N\ i s\ P+1 . If P is the negative characteristic of (log)_(10)N , then number of zeros after decimal before a significant digit start are P-1.( Use log_(10)\ 2=0. 301.(log)_(10)3=0. 4771 ) Number of significant digit in N , where N=(5/3)^(100), is- a. 23 b. \ 22 c. \ 21 d. none

Comprehension 3: If P is the non negative characteristic of (log)_(10)N , the number of significant digit in N i s P+1 . If P is the negative characteristic of (log)_(10)N , then number of zeros after decimal before a significant digit start are P-1 . (Use log_(10) 2=0. 301,log)_(10)3=0. 4771 ) Number of significant digit in N , where N=(5/3)^(100), is- a. 23 b. 22 c. 21 d. none

Comprehension 3 If P is the non negative characteristic of (log)_(10)N , the number of significant digit in N i s P+1 . If P is the negative characteristic of (log)_(10)N , then number of zeros after decimal before a significant digit start are P-1.( Use log_(10) 2=0. 301.(log)_(10)3=0. 4771 ) Number of significant digit in N , where N=(5/3)^(100), is- a.23 b. 22 c. 21 d. none

if log_(10)2= 0.3010 , then find the number of digits in (16)^(10)

If log_(10)2 = 0.3010, then find the number of digits in (64)^(10) .

Given log_(10)x = y if the characteristic of y is 10, then the number of digits to the left the decimal point in x is ______

* if log_(10)3=0.4771 then the number of digits in 3^(40) is =

find the number of solutions of log_(10)x=x