Home
Class 12
MATHS
Let a,b,c,d and p be any non zero disti...

Let a,b,c,d and p be any non zero distinct real numbers such that `(a^(2) + b^(2) + c^(2))p^(2) - 2(ab+bc+cd)p+ (b^(2) + c^(2) + d^(2))=0`. Then :

Promotional Banner

Similar Questions

Explore conceptually related problems

if a,b, c, d and p are distinct real number such that (a^(2) + b^(2) + c^(2))p^(2) - 2p (ab + bc + cd) + (b^(2) + c^(2) + d^(2)) lt= 0 then a, b, c, d are in

if a,b, c, d and p are distinct real number such that (a^(2) + b^(2) + c^(2))p^(2) - 2p (ab + bc + cd) + (b^(2) + c^(2) + d^(2)) lt 0 then a, b, c, d are in

If a,b,c,d and p are distinct non -zero real numbers such that : ( a^(2) + b^(2) +c^(2))p^(2) - 2 ( ab + bc + cd) p + ( b^(2) + c^(2) + d^(2)) le 0 , then a,b,c,d :

If a,b,c,d and p are distinct real numbers such that (1987,2M)(a^(2)+b^(2)+c^(2))p^(2)-2(ab+bc+cd)P+(b^(2)+c^(2)+d^(2))>=0, then a,b,c,d are in AP(b) are in GP are in HP(d) satisfy ab=cd

If a,b,c,d and p are distinct real numbers such that (a^(2)+b^(2)+c^(2))p^(2)-2(ab+bc+cd)p+(b^(2)+c^(2)+d^(2))<=0 then prove that a,b,c,d are in G.P.

If a,b,c,d and p are different real numbers such that: (a^(2)+b^(2)+c^(2))p^(I2)-2(ab+bc+cd)p+(b^(2)+c^(2)+d^(2))<=0 ,then show that a,b,c and d are in G.P.

If a,b,c,d and p are different real numbers such that (a^(2)+b^(2)+c^(2))p^(2)-2(ab+bc+cd)p+(b^(2)+c^(2)+d^(2))<=0 ,then show that a,b,c and d are in G.P.

If a,b,c ,d and p are distinct real number such that (a^2+b^2+c^2)p^2-2(ab+bc+cd)p+(b^2+c^2+d^2)le0 then a,b,c,d are in