Home
Class 12
MATHS
Let vec a , vec b , a n d vec c be thr...

Let ` vec a , vec b , a n d vec c` be three non-coplanar vectors and ` vec d` be a non-zero vector, which is perpendicular to `( vec a+ vec b+ vec c)dot` Now ` vec d=( vec axx vec b)sinx+( vec bxx vec c)cosy+2( vec cxx vec a)dotT h e n` a.`( vec ddot( vec a+ vec b))/([ vec a vec b vec c])=2` b.`( vec ddot( vec a+ vec b))/([ vec a vec b vec c])=-2` c. minimum value of `x^2+y^2` is `pi^2//4` d. minimum value of `x^2+y^2` is `5pi^2//4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a , vec b , a n d vec c be three non-coplanar vectors and vec d be a non-zero vector, which is perpendicular to ( vec a+ vec b+ vec c)dot Now vec d=( vec axx vec b)sinx+( vec bxx vec c)cosy+2( vec cxx vec a)dotT h e n a. ( vecd dot( vec a+ vec c))/([ vec a vec b vec c])=2 b. ( vecd dot( vec a+ vec c))/([ vec a vec b vec c])=-2 c. minimum value of x^2+y^2 is pi^2//4 d. minimum value of x^2+y^2 is 5pi^2//4

For any four vectors, prove that ( vec bxx vec c)dot( vec axx vec d)+( vec cxx vec a)dot( vec bxx vec d)+( vec axx vec b)dot( vec cxx vec d)=0.

Let vec a , vec b ,a n d vec c be non-coplanar vectors and let the equation vec a^' , vec b^' , vec c ' are reciprocal system of vector vec a , vec b , vec c , then prove that vec axx vec a^'+ vec bxx vec b^'+ vec cxx vec c ' is a null vector.

Let vec a , vec b ,a n d vec c be non-coplanar vectors and let the equation vec a^' , vec b^' , vec c ' are reciprocal system of vector vec a , vec b , vec c , then prove that vec axx vec a^'+ vec bxx vec b^'+ vec cxx vec c ' is a null vector.

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a , vec ba n d vec c are non coplanar vectors and vec axx vec c is perpendicular to vec axx( vec bxx vec c), then the value of [axx( vec bxx vec c)]xx vec c is equal to a. [ vec a vec b vec c] b. 2[ vec a vec b vec c] vec b c. vec0 d. [ vec a vec b vec c] vec a

The vector component of vec b perpendicular to vec a is ( vec bdot vec c) vec a b. ( vec axx( vec bxx vec a))/(| vec a|^2) c. vec axx( vec bxx vec a) d. none of these

Let vec a , vec ba n d vec c be three non-coplanar vecrors and vec r be any arbitrary vector. Then ( vec axx vec b)xx( vec rxx vec c)+( vec bxx vec c)xx( vec rxx vec a)+( vec cxx vec a)xx( vec rxx vec b) is always equal to [ vec a vec b vec c] vec r b. 2[ vec a vec b vec c] vec r c. 3[ vec a vec b vec c] vec r d. none of these

Let vec a , vec ba n d vec c be three non-coplanar vecrors and vec r be any arbitrary vector. Then ( vec axx vec b)xx( vec rxx vec c)+( vec bxx vec c)xx( vec rxx vec a)+( vec cxx vec a)xx( vec rxx vec b) is always equal to [ vec a vec b vec c] vec r b. 2[ vec a vec b vec c] vec r c. 3[ vec a vec b vec c] vec r d. none of these