Home
Class 11
MATHS
यदि किसी गुणोत्तर श्रेणी का pवाँ, qवाँ त...

यदि किसी गुणोत्तर श्रेणी का pवाँ, qवाँ तथा rवाँ पद क्रमश: a,b तथा c हो, तो सिद्ध कीजिए कि `a^(q-r) b^(r-p)c^P-q) = 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=xy^(p-1),b=yz^(q-1),c=zx^(r-1) , then a^(q-r)b^(r-p)c^(p-q) is equal to

If the pth,qth,rth terms of a G.P. be a,b,c ,c respectively,prove that a^(q-r)b^(r-p)c^(p-q)=1

If a=xy^(p-1),b=xy^(q-1) and c=xy^(r-1) prove that a^(q-r)b^(r-p)c^(p-q)=1

if a=xy^(p-1),b=xy^(q-1),c=xy^(r-1) show that a^(q-r).b^(r-p).c^(p-q)=1

If pth, qth, rth terms of an A.P are a,b,c then a(q - r ) + b(r - p ) + c(p - q) =

(2) If a=x^(q+r)*y^(p) , b=x^(r+p)*y^(q) , c=x^(p+q)y^(r) , show that a^(q-r)b^(r-p)c^(p-q)=1

Sum of the first p, q and r terms of an A.P are a, b and c, respectively.Prove that a/p(q-r)+b/q(r-p)+c/r(p-q)=0

Sum of first p,q and r terms of an A.P. are a,b,c respectively. Prove that a/p(q-r) +b/q(r-p) + c/r(p-q)=0 .