Home
Class 12
MATHS
Let alpha, beta are the roots of the equ...

Let `alpha, beta` are the roots of the equation `x^(2)+7x+k(k-3)=0`, where `k in (0, 3)` and k is a constant. Then the value of `tan^(-1)alpha+tan^(-1)beta+"tan"^(-1)(1)/(alpha)+"tan"^(-1)(1)/(beta)` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of the equation 6x^(2) - 5x + 1 = 0 , then the value of (1)/(pi) [tan ^(-1) (alpha) + tan^(-1) (beta)] is ________

If tan alpha, tan beta, tan lambda are the roots of the equation x^(3) - px^(2) - r = 0 then the value of (1+tan^(2) alpha) (1+tan^(2) beta)(1+tan^(2)lambda) =

IF alpha,beta are the roots of the equation 6x^(2)-5x+1=0 , then the value of tan^(-1)alpha+tan^(2)beta is

If alpha, beta, gamma are the roots of the equation x^(3)+mx^(2)+3x+m=0 , then the general value of Tan^(-1)alpha+Tan^(-1)beta+Tan^(-1)gamma is

If alpha,beta are the roots of x^(2)-k(x+1)-c=0 then (1+alpha)(1+beta)=