Home
Class 12
MATHS
Suppose the three vectors vec a,vec b,v...

Suppose the three vectors `vec a,vec b,vec c` on a plane satisfy the condition that `|vec a|=|vec b|=|vec c|=|vec a+vec b|=1 ; vec c` is perpendicular to `vec a and vec b.vec c lt 0` , then

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose the three vectors vec a,vec b,vec c on a plane satisfy the condition that |vec a|=|vec b|=|vec c|=|vec a+vec b|=1;vec c is perpendicular to vec a and vec b*vec c<0, then

If vec a,vec b and vec c be any three vectors then show that vec a+(vec b+vec c)=(vec a+vec b)+vec c

vec a, vec b, vec c are three vectors such that vec a + vec b + vec c = 0, |vec a| =1, |vec b| = 2, |vec c| =3 , then vec a . vec b + vec b . vec c + vec c . vec a =

If vec a, vec b, vec c are unit vectors satisfying the condition veca+ vec b+ vec c= 0 then show that vec a. vec b+ vec b.vec c+ vec c. vec a= -3//2 .

Prove that if the vectors vec a, vec b, vec c satisfy vec a+ vec b + vec c = vec 0 , then vec bxx vec c = vec c xx vec a = vec a xx vec b

If vec a, vec b, vec c are three mutually perpendicular vectors such that | vec a | = | vec b | = | vec c | then (vec a + vec b + vec c) * vec a =

Three vectors veca, vec b and vec c satisfy the condition vec a + vec b + vec c = 0 .Evaluate the quantity. mu = vec a.vec b + vec b.vec c+ veca.vec c if |vec a| = 1, |vec b| = 4, |vec c| = 2

For any three vectors vec a, vec b, vec c the expression (vec a - vec b) . [(vec b - vec c ) xx (vec c - vec a)] =

Three vectors vec a , vec b , vec c satisfy the condition vec a+ vec b+ vec c= vec0 . Evaluate the quantity mu= vec adot vec b+ vec bdot vec c+ vec cdot vec a , if | vec a|=1, | vec b|=4 a n d | vec c|=2.

For any three vectors vec a, vec b , vec c , show that vec a xx (vec b + vec c) + vec b xx (vec c + vec a) + vec c xx (vec a + vec b) = 0