Home
Class 12
MATHS
If vec a , vec b ,a n d vec c are mutua...

If ` vec a , vec b ,a n d vec c` are mutually perpendicular vectors and ` vec a=alpha( vec axx vec b)+beta( vec bxx vec c)+gamma( vec cxx vec a)a n d[ vec a vec b vec c]=1,` then find the value of `alpha+beta+gammadot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a,vec b, and vec c are mutually perpendicular vectors and vec a=alpha(vec a xxvec b)+beta(vec b xxvec c)+gamma(vec c xxvec a) and [vec avec bvec c]=1 then find the value of alpha+beta+gamma

If vec a , vec b ,a n d vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c|dot

If vec a , vec b , and vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c| .

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d is equally inclined to veca,vecb,vecc.

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d is equally inclined to veca,vecb,vecc.

If vec a , vec b ,a n d vec c are there mutually perpendicular unit vectors and vec d is a unit vector which makes equal angles with vec a , vec b ,a n d vec c , the find the value off | vec a+ vec b+ vec c+ vec d|^2dot

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of vec a+ vec b+ vec c

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of | vec a+ vec b+ vec c |