Home
Class 12
MATHS
Let the unit vectors a and b be perpendi...

Let the unit vectors `a` and `b` be perpendicular and the unit vector `c` be inclined at an angle `theta` to both `a` and `b`. If `c=alpha a+beta b+gamma(axxb)`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

The unit vector veca and vecb are perpendicular, and the unit vector vecc is inclined at an angle theta to both veca and vecb . If vecc=alpha veca+betavecb+gamma(vecaxxvecb) , then which one of the following is incorrect?

Unit vectors veca and vecb ar perpendicular , and unit vector vecc is inclined at an angle theta to both veca and vecb . If alpha veca + beta vecb + gamma (veca xx vecb) then.

Unit vectors veca and vecb ar perpendicular , and unit vector vecc is inclined at an angle theta to both veca and vecb . If alpha veca + beta vecb + gamma (veca xx vecb) then.

Unit vectors veca and vecb ar perpendicular , and unit vector vecc is inclined at an angle theta to both veca and vecb . If alpha veca + beta vecb + gamma (veca xx vecb) then.

Unit vectors veca and vecb ar perpendicular , and unit vector vecc is inclined at an angle theta to both veca and vecb . If alpha veca + beta vecb + gamma (veca xx vecb) ,then which of the following is incorrect?

Unit vectors veca and vecb ar perpendicular , and unit vector vecc is inclined at an angle theta to both veca and vecb . If vec c= alpha veca + beta vecb + gamma (veca xx vecb) then.

Let the unit vectors vec a and vec b be perpendicular to each other and the unit vector vec c be inclined at an angle theta to both vec a and vec b . If vec c = x vec a + y vec b + z (vec a xx vec b) then,

Let the unit vectors vec a and vec b be perpendicular to each other and the unit vector vec c be inclined at an angle theta to both vec a . and vec b. If vec c=xvec a+yvec b+z(vec a xxvec b) then

Unit vectors vec a and vec b are perpendicular, and unit vector vec c is inclined at angle theta to both vec a and vec bdot If vec c = alpha vec a+beta vec b+gamma( vec axx vec b), then a=beta b. gamma^1=1-2alpha^2 c. gamma^2=-cos2theta d. beta^2=(1+cos2theta)/2