Home
Class 12
MATHS
Let vec a , vec b ,a n d vec c be non-z...

Let ` vec a , vec b ,a n d vec c` be non-zero vectors and ` vec V_1= vec axx( vec bxx vec c)a n d vec V_2( vec axx vec b)xx vec cdot` Vectors ` vec V_1a n d vec V_2` are equal. Then ` vec aa n vec b` are orthogonal b. ` vec aa n d vec c` are collinear c. ` vec ba n d vec c` are orthogonal d. ` vec b=lambda( vec axx vec c)w h e nlambda` is a scalar

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a , vec b ,a n d vec c be non-zero vectors and vec V_1= vec axx( vec bxx vec c)a n d vec V_2=( vec axx vec b)xx vec c. Vectors vec V_1a n d vec V_2 are equal. Then (a). vec aa n vec b are orthogonal (b). vec aa n d vec c are collinear (c). vec ba n d vec c are orthogonal (d). vec b=lambda( vec axx vec c)w h e nlambda is a scalar

Let vec a , vec b ,a n d vec c be non-zero vectors and vec V_1= vec axx( vec bxx vec c)a n d vec V_2=( vec axx vec b)xx vec c. Vectors vec V_1a n d vec V_2 are equal. Then (a). vec aa n vec b are orthogonal (b). vec aa n d vec c are collinear (c). vec ba n d vec c are orthogonal (d). vec b=lambda( vec axx vec c)w h e nlambda is a scalar

Let vec a,vec b, and vec c be non-zero vectors and vec V_(1)=vec a xx(vec b xxvec c) and vec V_(2)(vec a xxvec b)xxvec c . Vectors vec V_(1)andvec V_(2) are equal.Then vec a an vec b are orthogonal b.vec a and vec c are collinear c.vec b and vec c are orthogonal d.vec b=lambda(vec a xxvec c) when lambda is a scalar

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .

Given that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec ca n d vec a is not a zero vector. Show that vec b= vec cdot

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d)dot (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec ba n d vec c are non coplanar vectors and vec axx vec c is perpendicular to vec axx( vec bxx vec c), then the value of [axx( vec bxx vec c)]xx vec c is equal to a. [ vec a vec b vec c] b. 2[ vec a vec b vec c] vec b c. vec0 d. [ vec a vec b vec c] vec a