Home
Class 12
MATHS
If y=tan^(-1)x+tan^(-1)(1/x)+sec^(-1)x ,...

If `y=tan^(-1)x+tan^(-1)(1/x)+sec^(-1)x ,` then `y` lies in the interval ` (a) [pi/2,pi)uu[pi,(3pi)/2)` (b) `[pi/2,(3pi)/2]` `(c)(0,pi)` (d) `[0,pi/2)uu[pi/2,pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given: \[ y = \tan^{-1} x + \tan^{-1} \left(\frac{1}{x}\right) + \sec^{-1} x \] ### Step 1: Understanding the components of y 1. **Domain of \(\tan^{-1} x\)**: - The function \(\tan^{-1} x\) is defined for all real numbers \(x\) and its range is \((- \frac{\pi}{2}, \frac{\pi}{2})\). 2. **Domain of \(\tan^{-1} \left(\frac{1}{x}\right)\)**: - This function is defined for \(x \neq 0\) and its range is also \((- \frac{\pi}{2}, \frac{\pi}{2})\). 3. **Domain of \(\sec^{-1} x\)**: - The function \(\sec^{-1} x\) is defined for \(x \leq -1\) or \(x \geq 1\). Its range is \([0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]\). ### Step 2: Finding the overall domain of y - The overall domain of \(y\) is the intersection of the domains of the individual components: - \(\tan^{-1} x\) and \(\tan^{-1} \left(\frac{1}{x}\right)\) restrict \(x\) to \((- \frac{\pi}{2}, \frac{\pi}{2})\) excluding \(0\). - \(\sec^{-1} x\) restricts \(x\) to \(x \leq -1\) or \(x \geq 1\). Thus, the intersection of these domains gives us: - For \(x \geq 1\): \((- \frac{\pi}{2}, \frac{\pi}{2}) \cap [1, \infty) = [1, \infty)\) - For \(x \leq -1\): \((- \frac{\pi}{2}, \frac{\pi}{2}) \cap (-\infty, -1] = (-\infty, -1)\) ### Step 3: Evaluating y at the boundaries 1. **As \(x \to 1\)**: \[ y = \tan^{-1}(1) + \tan^{-1}(1) + \sec^{-1}(1) = \frac{\pi}{4} + \frac{\pi}{4} + 0 = \frac{\pi}{2} \] 2. **As \(x \to -1\)**: \[ y = \tan^{-1}(-1) + \tan^{-1}(-1) + \sec^{-1}(-1) = -\frac{\pi}{4} - \frac{\pi}{4} + \pi = \frac{\pi}{2} \] 3. **As \(x \to \infty\)**: \[ y = \tan^{-1}(\infty) + \tan^{-1}(0) + \sec^{-1}(\infty) = \frac{\pi}{2} + 0 + 0 = \frac{\pi}{2} \] 4. **As \(x \to -\infty\)**: \[ y = \tan^{-1}(-\infty) + \tan^{-1}(0) + \sec^{-1}(-\infty) = -\frac{\pi}{2} + 0 + \pi = \frac{\pi}{2} \] ### Step 4: Conclusion on the range of y From the evaluations, we see that \(y\) approaches \(\frac{\pi}{2}\) but does not include it since both \(\tan^{-1}\) functions are exclusive at their limits. Therefore, the range of \(y\) is: \[ y \in (0, \pi) \] ### Final Answer Thus, the correct option is: **(c) (0, π)**
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    RESONANCE DPP|Exercise All Questions|15 Videos
  • MATRICES

    RESONANCE DPP|Exercise All Questions|7 Videos

Similar Questions

Explore conceptually related problems

f(x) = cos x is strictly increasing in the interval : (a) ((pi)/(2),pi) (b) (pi,(3 pi)/(2)) (c) (0,(pi)/(2))

The range of function f(x)=cot^(-1)x+sec^(-1)x+ cosec^(-1)x is (A) [(pi)/(2), pi)uu(pi, (3 pi)/(2)] (B) ((pi)/(2), (3 pi)/(4)] uu [(5 pi)/(4), (3 pi)/(2)) (C) ((pi)/(2), pi)uu(pi ,(3 pi)/(2)) (D) ((pi)/(2), (3 pi)/(2))

If cos(sinx)=0, then x lies in (a) (pi/4,pi/2)uu(pi/2,\ pi) (b) (-pi/4,\ 0) (c) (pi,(3pi)/2) (d) null set

One of the root equation cos x-x+(1)/(2)=0 lies in the interval (0,(pi)/(2))(b)(-(pi)/(2,0))(c)((pi)/(2),pi)(d)(pi,(3 pi)/(2))

If sin ^ (- 1) x + tan ^ (- 1) x = y (-1

If |veca+vecb|lt|vecavecb| then the angle between veca and vecb lies in the interval (A) (-pi/2, pi/2) (B) (0,pi0) (C) (pi/2,(3pi)/2) (D) (0,2pi)

tan^(-1)x+tan^(-1)(1)/(x)={[(pi)/(2), if x>0-(pi)/(2), if x<0

If sin^(-1)x+sin^(-1)y=(2 pi)/(3) ,then the value of cos^(-1)x+cos^(-1)y is (A) (2 pi)/(3) (B) (pi)/(3) (C) (pi)/(2) (D) pi

tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y) is equal to (A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

Range of tan^(-1)((2x)/(1+x^(2))) is (a) [-(pi)/(4),(pi)/(4)] (b) (-(pi)/(2),(pi)/(2))(c)(-(pi)/(2),(pi)/(4)) (d) [(pi)/(4),(pi)/(2)]

RESONANCE DPP-JEE MAINS-All Questions
  1. If (log)a b=2,(log)b c=2 and (log)3c=(log)3a+3, then (a+b+c) is equal ...

    Text Solution

    |

  2. Number of integral solutions of the equation (log)(x-3)((log)(2x^2-2x+...

    Text Solution

    |

  3. If y=tan^(-1)x+tan^(-1)(1/x)+sec^(-1)x , then y lies in the interval ...

    Text Solution

    |

  4. If the matrix satisfies the equation [1-2 4 3]+2x=[2 1-2 0 1 3][3 2 1 ...

    Text Solution

    |

  5. Find the range of f(x), where f(x)=cos(sin(In(x^2+e)/(x^2+1)))+sin(cos...

    Text Solution

    |

  6. A line cuts the x-axis at A (7, 0) and the y-axis at B(0, - 5) A varia...

    Text Solution

    |

  7. If A=" "{3," "5," "7," "9," "11} , B" "=" "{7," "9," "11 ," "13} , C" ...

    Text Solution

    |

  8. The value of expression, (log)4((x^2)/4)-2(log)4(4x^4) when x=-2 is -6...

    Text Solution

    |

  9. At the point P(a,a^(n)) on the graph of y=x^(n)(n in N) in the first q...

    Text Solution

    |

  10. Let N=(4^5+4^4+4^4+4^4)/(3^5+3^5+3^5)dot(6^5+6^5+6^5+6^5+6^5+6^5)/(2^5...

    Text Solution

    |

  11. If | vec a|=2,| vec b|=5a n d vec adot vec b=0, then vec ax( vec ax( ...

    Text Solution

    |

  12. If x=(log)k b=(log)b c=1/2(log)c d , then (log)k d is equal to 6x (b)...

    Text Solution

    |

  13. If f(x)=x^3+b x^2+c x+d and 0<b^2<c , then f(x) is a strictly increasi...

    Text Solution

    |

  14. The number of solution of the equation, log(-2x)=2"log"(x+1) is: zero ...

    Text Solution

    |

  15. Let vec a=2 hat i+ hat j+ hat k , hat b= hat i+2 hat j- hat k and a ...

    Text Solution

    |

  16. If (log)3x=a and (log)7x=b , then which of the following is equal to (...

    Text Solution

    |

  17. If a unit vector hat a in the plane of vec b=2 hato+ hat j& vec c= h...

    Text Solution

    |

  18. The solution set of the inequality max {1-x^2,|x-1|}<1 is (-oo,0)uu(1,...

    Text Solution

    |

  19. Number of solution satisfying, sqrt(5-(log)2x)=3-(log)2x are: 1 (b) 2 ...

    Text Solution

    |

  20. If product of the roots of the equation 3x^2-4x+(loga^2-log(-a)+3)=0 i...

    Text Solution

    |