Home
Class 12
MATHS
Find the arguments of z(1)=sqrt3+i and ...

Find the arguments of `z_(1)=sqrt3+i and z_(2)=-1-isqrt3 and "hence,calculate arg"(z_(1)z_(2)) and "arg" (z_(1)/(z_(2)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

arg(z_(1)z_(2))=arg(z_(1))+arg(z_(2))

arg((z_(1))/(z_(2)))=arg(z_(1))-arg(z_(2))

If z_(1)=3i and z_(2)=-1-i , where i=sqrt(-1) find the value of arg ((z_(1))/(z_(2)))

If z_(1)=-1,z_(2)=i then find Arg ((z_(1))/(z_(2)))

If z_(1)=1+isqrt3and z_(2)=sqrt3-i, show that arg""(z_(1))/(z_(2))=argz_(1)-argz_(2).

If z_(1)=1+isqrt3and z_(2)=sqrt3-i, show that arg(z_(1)z_(2))=argz_(1)+argz_(2)

If (pi)/(3) and (pi)/(4) are argument of z_(1) and bar(z)_(2) then the value of arg (z_(1)z_(2)) is

If z_(1)=(sqrt3-1)+(sqrt3+1)i and z_(2)=-sqrt3+i" ""find" " "arg z_(1) and argz_(2), hence, calculate arg(z_(1)z_(2)).

If (pi)/(3) and (pi)/(4) are arguments of z_(1) and bar(z)_(2), then the value of arg (z_(1)z_(2)) is

If arg (z_(1))=(17pi)/18 and arg (z_(2))=(7pi)/18, find the principal argument of z_(1)z_(2) and (z_(1)//z_(2)).