Home
Class 12
MATHS
|{:(0,ab^2,ac^2),(a^2b,0,bc^2),(a^2c,cb^...

`|{:(0,ab^2,ac^2),(a^2b,0,bc^2),(a^2c,cb^2,0):}|=2a^3b^3c^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Without expanding, prove the following |(0,ab^2,ac^2),(a^2b,0,bc^2),(a^2b,b^2c,0)|=2a^3b^3c^3

Statment - I : |{:(0,ab^(2),ac^(2)),(a^(2)b,0,bc^(2)),(a^(2)c,b^(2)c,0):}|=2a^(3)b^(3)c^(3) Statment - II : |{:(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2)):}|=(a^(3)+b^(3))^(2) Which of the above statement(s) is true ?

|(0,ab^(2),ac^(2)),(a^(2)b,0,bc^(2)),(a^(2)c,b^(2)c,0)|=

I: |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))|=2a^(2)b^(2)c^(2) II: |(0,ab^(2),ac^(2)),(a^(2)b,0,bc^(2)),(a^(2)c,b^(2)c,0)|=2a^(3)b^(3)c^(3)

Using properties of determinants, prove that |{:(0, ab^(2), ac^(2)),(a^(2)b, 0, bc^(2)),(a^(2)c, cb^(2), 0):}|=2a^(3)b^(3)c^(3)

Evaluate the following: |[0, ab^2, ac^2],[a^2b, 0, bc^2],[a^2c, cb^2, 0]|

If |{:(bc-a^(2),ac-b^(2),ab-c^(2)),(ac-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ac-b^(2)):}|=k(a^(3)+b^(3)+c^(3)-3abc)^(l) then the value of (k, l) is

Prove the following by multiplication of determinants and power cofactor formula |{:(0,c,b),(c,0,a),(b,a,0):}|^(2)=|{:(b^(2)+v^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b^(2)):}| =|{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}|=4a^(2)b^(2)c^(2)

Prove that, abs((-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2)) =4 a^2b^2c^2 .