Home
Class 12
MATHS
Let Z be the set of all integers, then ...

Let Z be the set of all integers, then , the operation * on Z defined by a*b=a+b-ab is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let Z^(+) be the set of all positive integers , then the operation * on Z^(+) defined by a * b=a^(b) is

Let Z be the set of all integers and R be the relation on Z defined as R = (a,b) : a,b in Z and a-b is divisible by 5) Prove that R is an equivalence relation.

Let Z be the set of all integers and R be the relation on Z defined by R= { (a,b): a, b in Z and (a-b) is divisible by 5} . Prove that R is an equivalence relation

Let Z be the set of all integers and let R be a relation on Z defined by a Rb implies a ge b . then R is

Let Z be the set of all integers and R be the relation on Z defined as R={(a,b);a,b in Z, and (a-b) is divisible by 5.}. Prove that R is an equivalence relation.

Let Z be the set of all integers and R be the relation on Z defined as R={(a, b); a,\ b\ in Z, and (a-b) is divisible by 5} . Prove that R is an equivalence relation.

Let Z be the set of all integers and R be the relation on Z defined as R={(a , b); a ,\ b\ in Z , and (a-b) is divisible by 5.} . Prove that R is an equivalence relation.

Let Z be the set of all integers and R be the relation on Z defined as R={(a , b); a ,\ b\ in Z , and (a-b) is divisible by 5.} . Prove that R is an equivalence relation.