Home
Class 9
MATHS
m का मान, [{1/(7^(2))}^(-2)}^(-1//3)]^(1...

m का मान, `[{1/(7^(2))}^(-2)}^(-1//3)]^(1//4)=7^(m)`, समान होगा:

Promotional Banner

Similar Questions

Explore conceptually related problems

If [{((1)/(7^(2)))^(-2)}^(-1//3)]^(1//4)=7^(m) , then m= _____.

The value of m for which [{(1/(7^2))^(-2)}^(1/3)]^(1/4)=7^m , is (a) 1/3 (b) 1/4 (c) -3\ (d) 2

[{((1)/(7^(2)))^(-2)}^((1)/(3))]^((1)/(4))=7^(m), is -(1)/(3)(b)(1)/(4)(c)-3(d)2

यदि x+(1)/(x)=sqrt(3) है तब x^(3)+(1)/(x^(3)) का मान होगा -

यदि (x)/(y)=((3)/(2))^(2)div ((5)/(7))^(0) , तब ((y)/(x))^(2) का मान क्या होगा -

The value of (a^(2/3) +2a^(1/2)+3a^(1/3) +2a^(1/6)+1)(a^(1/3)-2a^(1/6)+1)-a^(1/2)(a^(1/2)-2) , when a = 7, is: (a^(2/3) +2a^(1/2)+3a^(1/3) +2a^(1/6)+1)(a^(1/3)-2a^(1/6)+1)-a^(1/2)(a^(1/2)-2) , का मान ज्ञात कीजिए, जब a= 7 है:

int(x^(7m)+x^(2m)+x^m)(2x^(6m)+7x^m+14)^(1/m)dx

3(1)/(12)-[1(3)/(4)+{2(1)/(2)-(1(1)/(2)-(1)/(3))}] का मान है -