Home
Class 11
MATHS
Let vecalpha = 2i + 3j-k and vecbeta= i+...

Let `vecalpha = 2i + 3j-k` and `vecbeta= i+j`. If `vecgamma` is a unit vector, then the maximum value of `[vecalphaxxvecbeta,vecbetaxxvecgamma,vecgammaxxvecalpha]` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If vectors vecalpha,vecbeta, vecgamma are such that vecalpha+vecbeta+vec gamma=vec0 and |veca|=2, |vecbeta|=3 and |vecgamma|=4 , then the value of 2(vecalpha*vecbeta+vecbeta*vecgamma+vecgamma*vecalpha) is -

Let veca=2i-j+2k and vecb=6i+2j+3k .Find a unit vector in the direction of veca+vecb .

Let vecalpha, vecbeta, vecgamma be three non-zero vectors which are pairwise non-collinear. If vecalpha+3vecbeta is collinear with vecgamma and vecbeta +2vecgamma is collinear with vecalpha , then vecalpha+3vecbeta +6vecgamma is

Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplanar. If vecc is pependicular to veca . Then vecc is

Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplanar. If vecc is pependicular to veca . Then vecc is

Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplanar. If vecc is pependicular to veca . Then vecc is

If a = i + j, b = j + k and c = i + k then a unit vector in the direction of a - 2b + 3c is