Home
Class 12
MATHS
Show that the function f(x) given by f(...

Show that the function `f(x)` given by `f(x)={((e^(1/x)-1)/(e^(1/x)+1), when x!=0), (0, when x=0):}` is discontinuous at `x=0` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the function f(x) given by f(x)={(e^(1/x)-1)/(e^(1/x)+1), when x!=00,quad when x=0 is discontinuous at x=0

Show that the function f(x)={{:((e^(1//x)-1)/(e^(1//x)+1)", when "x!=0),(0", when "x=0):} is discontinuous at x=0 .

Show that the function f(x) given by f(x)={xsin1/x ,x!=0 0,x=0

If f(x)=(e^((1)/(x))-1)/(1+e^((1)/(x))) when x!=0=0, when x=0 show that f(x) is discontinuous at x=0

Show the function, f(x)={((e^(1//x)-1)/(e^(1//x)+1), "when x" le 0),(0, "when x"=0):} has non-removable discontinuity at x=0

The function f given by f(x)={((e^(1//x)-1)/(e^(1//x)+1)",","if",x ne 0),(0",","if", x =0):} , is

If f(x)={:{((e^(1/x)-1)/(e^(1/x)+1)", for " x !=0),(1", for " x=0):} , then f is

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}