Home
Class 12
MATHS
If A+B+C= (pi)/(2), then show that sin 2...

If `A+B+C= (pi)/(2)`, then show that `sin 2A+sin 2B +sin 2C=4 cos A cos B cos C`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C = (pi)/(2) , prove that sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C

If A+B+C=(pi)/(2) ,prove that: sin 2A+"sin" 2B+"sin" 2C=4 cosA cos B cos C.

If A+B+C=pi/2 prove the following (i) sin 2A+sin 2B +sin 2C=4 cos A cos B cos C (ii) cos 2A +cos 2B+cos 2C=1+4 sin A sin B sin C.

If A + B + C= pi , prove that sin 2A + sin 2B -sin 2C =4cos A cos B sin C

If A+B+C=(3pi)/(2) , then show that cos 2A+cos 2B+cos 2C=1-4 sin A sin B sin C .

If A+B+C=(3pi)/(2) , then show that cos 2A+cos 2B+cos 2C=1-4 sin A sin B sin C .

If A+B+C=(3pi)/(2) , then show that cos 2A+cos 2B+cos 2C=1-4 sin A sin B sin C .

If A+B+C=180^(@), show that sin2A-sin2B-sin2C=-4sin A cos B cos C

If : A+B+C=pi, "then" : sin 2A + sin 2 B - sin 2 C= A) 4 sin A * cos B * cos C B) 4 sin B * sin C * cos A C) 4 sin C * cos A * cos B D) 4 sin A * sin B * sin C

If A+B+C=(pi)/(2) , then prove that cos 2A + cos 2B + cos 2C=1+4 sin A sin B sin C .