Home
Class 12
MATHS
y=log[(x+sqrt(x^2+25))/(sqrt(x^2+25)-x)]...

`y=log[(x+sqrt(x^2+25))/(sqrt(x^2+25)-x)],f i n d(dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

y=log[(x+sqrt(x^(2)+25))/(sqrt(x^(2)+25)-x)], find (dy)/(dx)

If y=cos^(-1){(2x-3sqrt(1-x^2))/(sqrt(13))},"f i n d"(dy)/(dx)

y=tan^(- 1)sqrt((1-x)/(1+x))f i n d(dy)/(dx)

y=tan^(- 1)sqrt((1-x)/(1+x))f i n d(dy)/(dx)

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=log((x^2+x+1)/(x^2-x+1))+2/(sqrt(3))t a n^(-1)((sqrt(3)x)/(1-x^2)),"f i n d"(dy)/(dx)

If y=log(x+sqrt(x^(2)-1)), then (dy)/(dx)=

y=ln(x+sqrt(x^(2)+a^(2))). Find (dy)/(dx)

If y=log(sqrt(x)+(1)/(sqrt(x))). Prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y = log (x + sqrt(x^2+1))/(sqrt(x^2+1)) , prove that (x^2 +1) dy/dx + xy = 1