Home
Class 11
MATHS
If alpha,beta,gamma are the respective ...

If `alpha,beta,gamma` are the respective altitudes of a triangle ABC, prove that (i) `1/(alpha^2)+1/(beta^2)+1/(gamma^2)= (cotA + cotB + cotC)/Delta` (ii) `1/(alpha)+1/(beta)-1/(gamma^2)= (2ab)/((a+b+c)Delta) Cos^2 (C/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma , are lengths of the altitudes of a triangle ABC with area Delta , then Delta^2/R^2(1/alpha^2+1/beta^2+1/gamma^2)=

If alpha,beta,gamma are the lengths of the altitudes of Delta ABC, then (cos A)/(alpha)+(cos B)/(beta)+(cos C)/(gamma)=

If alpha, beta , gamma are the lengths of the altitudes of Delta ABC , " then " alpha ^(-2) +beta ^(-2) +gamma^(-2) =

If alpha, beta and gamma are the lengths of altitudes ABC and Delta be its area prove that : (1)/(alpha^(2))+(1)/(beta^(2)) + (1)/(gamma^(2)) = ((cot A + cot B + cot C))/(Delta)

If alpha, beta , gamma lengths of the altitudes of a triangle ABC, prove that alpha^(-2)+ beta^(-2) + gamma^(-2)=(1)/(Delta)( cot A+ cot B+cotC) , where Delta is the area of the triangle.

IF alpha,beta,gamma are the lengths of the altitudes of Delta ABC , then 1/alpha+1/beta-1/gamma-(2ab)/((a+b+c)Delta)cos^2""C/2=

If alpha,beta,gamma are lengths of the altitudes of a triangle ABC with area Delta, then (Delta^(2))/(R^(2))((1)/(alpha^(2))+(1)/(beta^(2))+(1)/(gamma^(2)))=

If alpha,beta, gamma are the lengths of altitudes of Delta ABC , then alpha^-2+ beta^-2+ gamma^-2 =

If alpha,beta,gamma are lengths of internal bisectors of angles A,B,C respectively of Delta ABC, then sum(1)/(alpha)cos((A)/(2)) is

If alpha,beta. gamma are the roots of x^(3)+px^(2)+q=0 where q=0, ther Delta=[[(1)/(alpha),(1)/(gamma)(1)/(gamma),(1)/(gamma)(1)/(gamma),(1)/(alpha),(1)/(beta)(1)/(gamma),(1)/(alpha),(1)/(beta)]](A)alpha beta gamma(B)alpha+beta+gamma(C)0(D) none of these