Home
Class 8
MATHS
Given that logpx = alpha and logqx = bet...

Given that `log_px = alpha and log_qx = beta` , then value of `log_(p/q)x` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(p)x=alpha andlog _(q)x=beta, then the value of log_((p)/(q))x is

Given that (log)_p x=alpha\ a n d(log)_q x=beta,\ then value of equals- a. (alphabeta)/(beta-alpha) b. (beta-alpha)/(alphabeta) c. (alpha-beta)/(alphabeta) d. (alphabeta)/(alpha-beta)

If log_30(3)=alpha and log_30(5)=beta, then log_30(8) is equal to

If log_(12)18=alpha and log_(24)54=beta then the value of alpha beta+alpha-beta

If log_(p)x=a and log_(q)x=b prove that log_(p/q)x=(ab)/(a-b)

If log_(q)(xy)=3 and log_(q)(x^(2)y^(3))=4 , find the value of log_(q)x ,

If p >1 and q >1 are such that log(p+q)=logp+logq , then the value of log(p-1)+log(q-1) is equal to

If p>1 and q>1 are such that log(p+q)=log p+log q ,then the value of log(p-1)+log(q-1) is equal to (a)0(b)1 (c) 2(d) none of these