Home
Class 11
MATHS
The perpendicular form the origin on th...

The perpendicular form the origin on the line joining the points `P(r cos alpha,r sin alpha)` and `Q(r cos beta,r sin beta)` divides PQ in the ratio 1 : k then principal value of `cos^(-1)((1)/(k))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Perpendicular from the origin to the line joining the points (c cos alpha,c sin alpha) and (c cos beta,c sin beta) divides it in the ratio

Perpendicular from the origin to the line joining the points (c cos alpha,c sin alpha) and (c cos beta,c sin beta) divides it in the ratio

1. Find the distance between the following points.(i) (a cos alpha, a sin alpha) and (a.cos beta, a sin beta)

The lines x cos alpha+y sin alpha=P_(1) and x cos beta+y sin beta=P_(2) will be perpendicular,if :

If sin alpha=1/2 and cos beta=1/2 then alpha+beta=

The orthocentre of triangle formed by (a cos alpha,a sin alpha),(a cos beta,a sin beta),(a cos gamma,a sin gamma) is

" Locus of the point ",[(r sec alpha*cos beta,r sec alpha*sin beta,r tan alpha) is"

(sinalpha cos beta+cos alpha sin beta)^2+(cos alpha cos beta-sin alpha sin beta)^2=1