Home
Class 11
MATHS
If bar(a) and bar(c) are unit parallel v...

If `bar(a)` and `bar(c)` are unit parallel vectors `|bar(b)|=6` then `bar(b)-3bar(c)=lambdabar(a)` if `lambda`

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a),bar(b) and bar(c) are mutually perpendicular vectors then [bar(a)bar(b)bar(c)]=

bar(a) and bar(c) are unit vectors and |bar(b)|=4 with bar(a)xxbar(b)=2bar(a)xxbar(c). The angle between bar(a) and bar(c) is cos^(-1)((1)/(4))* Then bar(b)-2bar(c)=lambdabar(a) If lambda is

If bar(a) and bar(b) are two unit vectors perpendicular to each other and bar(c)=lambda_1 bar(a)+lambda_2bar(b)+lambda_(3)(bar(a)timesbar(b)) ,then which of the following is (are) true? (A) lambda_(1)=bar(a).bar(c) (B) lambda_(2)=|bar(b)timesbar(a)| (C) lambda_(3)=|(bar(a)timesbar(b))timesbar(c)| (D) lambda_(1)+lambda_(2)+lambda_(3)=(bar(a)+bar(b)+bar(a)timesbar(b)).bar(c)

bar(a) , bar(b) and bar(c) are three vectors such that bar(a) + bar(b) + bar(c) = bar(0) and |bar(a)| =2, |bar(b)| =3, |bar(c)| =5 ,then bar(a) . bar(b) + bar(b) . bar(c) + bar(c) . bar(a) equals

If bar(a),bar(b) and bar(c) are unit vectors satisfying |bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2)=9 , then |2bar(a)+5bar(b)+5bar(c)| =

If bar(a) and bar(b) are unit vectors then the vectors (bar(a)+bar(b))xx(bar(a)xxbar(b)) is parallel to the vector

If bar(a),bar(b),bar(c) are non-coplanar vectors such that then bar(b)xxbar(c)=bar(a),bar(c)xxbar(a)=bar(b) and bar(a)xxbar(b)=bar(c), then |bar(a)+bar(b)+bar(c)|=

If bar(a),bar(b),bar(c) be three vectors such that |bar(a)+bar(b)+bar(c)|=1,lambda(bar(a)xxbar(b)) and |bar(a)|=(1)/(sqrt(2)),|bar(b)|=(1)/(sqrt(3)),|bar(c)|=-(1)/(sqrt(6)) then the angle between bar(a) and is

If bar(a),bar(b),bar(c) are three non zero vectors,then bar(a).bar(b)=bar(a).bar(c)rArr

If bar(a),bar(b),bar(c) are non coplanar vectors and lambda is a real number then [lambda(bar(a)+bar(b))lambda^(2)bar(b)lambdabar(c)]=[bar(a)bar(b)+bar(c)bar(b)] for