Home
Class 11
MATHS
The point of intersection of the lines b...

The point of intersection of the lines `bar(r)timesbar(a)=bar(b)timesbar(a)` and `bar(r)timesbar(b)=bar(a)timesbar(b)` is
1.`bar(a)-bar(b)` 2.`bar(a)+bar(b)` 3.`2bar(a)+3bar(b)` 4.`3bar(a)-2bar(b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a)+bar(b)+bar(c)=bar(0) then bar(a)timesbar(b)=

If |bar(a)|=|bar(b)|=1 and |bar(a)timesbar(b)|=bar(a)*bar(b) , then |bar(a)+bar(b)|^(2)=

If |bar(a)+bar(b)|<|bar(a)-bar(b)| then (bar(a),bar(b)) is

(bar(a)+2bar(b)-bar(c))*(bar(a)-bar(b))xx(bar(a)-bar(bar(c)))=

If |bar(a)|=|bar(b)|=|bar(c)|=2 and bar(a).bar(b)=bar(b).bar(c)=bar(c).bar(a)=2 then [bar(a) bar(b) bar(c)] equal to

If [bar(a) bar(b) bar(c)]=2 then [2(bar(b)timesbar(c))(bar(-c)timesbar(a))(bar(b)timesbar(a))] is equal to

If [bar(a) bar(b) bar(c)]=2 ,then [2(bar(b)timesbar(c))(-bar(c)timesbar(a))(bar(b)timesbar(a))] is equal to

Let bar(a)=bar(i)+bar(j),bar(b)=2bar(i)-bar(k). Then the point of intersection of the lines bar(r)xxbar(a)=bar(b)xxbar(a) and bar(r)xxbar(b)=bar(a)xxbar(b) is

If [bar(a)+2bar(b)2bar(b)+bar(c)5bar(c)+bar(a)]=k[bar(a)bar(b)bar(c)]

The angle between (bar(A)timesbar(B))) and (bar(B)timesbar(A)) is (in radian)