Home
Class 11
MATHS
If bar(a),bar(b),bar(c),bar(d) are non z...

If `bar(a),bar(b),bar(c),bar(d)` are non zero coplanar vectors and `2x_(1)bar(a)+2x_(2)bar(b)-bar(c)+4x_(3)bar(d)=bar(0),x_(l),x_(2),x_(3)` real then minimum value of `x_(1)^(2)+x_(2)^(2)+x_(3)^(2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a),bar(b),bar(c) are three non zero vectors,then bar(a).bar(b)=bar(a).bar(c)rArr

If four vectors bar(a),bar(b),bar(c),bar(d) are coplanar,then (bar(a)xxbar(b))xx(bar(c)xxbar(d))=

If bara,barb,barc are non-coplanar vectors then [bar(a)+2bar(b)" "bar(a)+bar(c)" "bar(b)]=

If bar(a),bar(b),bar(c) are non-zero,non-coplanar vectors then {bar(a)times(bar(b)+bar(c))}times{bar(b)times(bar(c)-bar(a))} is collinear with the vector

If bar(a) , bar(b) , bar(c) are non -zero,non - coplanar vectors and bar(a)+bar(b)+bar(c) , -a+8bar(b)+7bar(c) , 5bar(a)+lambdabar(b)-3bar(c) are coplanar,then the value of |lambda| is

If bar(a), bar(b), bar(c) are non-coplanar vectors and x, y, z are scalars such that bar(a)=x(bar(b)timesbar(c))+y(bar(c)timesbar(a))+z(bar(a)timesbar(b)) then x =

bar(a) and bar(b) are non-collinear vectors. If bar(c)=(x-2)bar(a)+bar(b) and bar(d)=(2x+1)bar(a)-bar(b) are collinear, then find the value of x.

If bar(a),bar(b),bar(c) are non - coplanar vectors, then show the vectors -bar(a)+3bar(b)-5bar(c),-bar(a)+bar(b)+bar(c) and 2bar(a)-3bar(b)+bar(c) are coplanar.

If bar(a),bar(b),bar(c) are non-coplanar vectors such that then bar(b)xxbar(c)=bar(a),bar(c)xxbar(a)=bar(b) and bar(a)xxbar(b)=bar(c), then |bar(a)+bar(b)+bar(c)|=

If bar(a),bar(b),bar(c) are non-zero, non -coplanar vectors, then show that the vectors 2bar(a)-5bar(b)+2bar(c),bar(a)+5bar(b)-6bar(c)and3bar(a)-4bar(c) are coplanar.