Home
Class 11
MATHS
If bar a,bar b,bar c are three vectors ...

If `bar a,bar b,bar c` are three vectors of magnitude `sqrt3, 1, 2` such that `bar axx(bar a xx bar c)+3bar b=bar 0 and theta` is the angle between `bar a and bar c` then `cos^2 theta=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a),bar(b),bar(c) are three vectors of magnitude sqrt(3),1,2 such that bar(a)xx(bar(a)xxbar(c))+3bar(b)=bar(0) and theta is the angle between bar(a) and bar(c) then cos^(2)theta=

Let bar(a),bar(b) and bar(c) be three vectors having magnitudes 1,1 and 2 respectively. If bar(a)times(bar(a)times bar(c))-bar(b)=0 then the acute angle between bar(a) and bar(c) is

IF bar a , bar b , bar c are mutually perpendicular vectors having magnitudes 1,2,3 respectively then [ bar a + bar b + bar c " " bar b - bar a " " bar c ]=?

Let a,b, c be three vectors such that |bar(a)|=1,|bar(b)|=2 and if bar(a)times(bar(a)timesbar(c))+bar(b)=bar(0), then angle between bar(a) and bar(c) can be.

Let bar(a) , bar(b) and bar(c) be non-zero vectors such that (bar(a)timesbar(b))timesbar(c)=(1)/(3)|bar(b)||bar(c)|bar(a) ..If theta is the acute angle between the vectors bar(b) and bar(c) then sin theta=2k then k=

if bar(a),bar(b),bar(c) are any three vectors then prove that [bar(a),bar(b)+bar(c),bar(a)+bar(b)+bar(c)]=0

Let bar(a),bar(b) and bar(c) be non-zero and non collinear vectors such that (bar(a)times bar(b))times bar(c)=(1)/(3)|bar(b)||bar(c)|bar(a) .If theta is the acute angle between the vectors bar(b) and bar(c) then sin theta

If bar(a),bar(b),bar(c) are non-coplanar unit vectors such that bar(a)times(bar(b)timesbar(c))=(sqrt(3))/(2)(bar(b)+bar(c)) then the angle between bar(a) and bar(b) is ( bar(b) and bar(c) are non collinear)

" If three vector "A,B" and "C" are "12,5" and "13" in magnitude such that "bar(c)=bar(A)+bar(B)" ,then the angle between "A" and "B" is "

If bar(a) and bar(b) be non collinear vectors such that |bar(a)times bar(b)|=bar(a).bar(b) then the angle between bar(a) and bar(b) is