Home
Class 12
MATHS
Let vec a xx vec b,vec b xx vec c,vec c ...

Let `vec a xx vec b`,`vec b xx vec c`,`vec c xx vec a` are non coplanar vectors and `[[vec a,vec b,vec c]]=1`.`vec r` is a vector such that `vec r.vec a`=`vec r.vec b`=`vec r.vec c`=2, then area of triangle whose vertices are `vec a`,`vec b` and `vec c` is (A) `|vecr|/2` (2) `2|vecr|` (C) `|vecr|/4` (D) `4|vecr|`

Promotional Banner

Similar Questions

Explore conceptually related problems

vec a,vec b,vec c are the three coplanar vectors and if vec r*vec a=vec r*vec b=vec r*vec c=0 then prove that vec r is a zero vector

If vec a,vec c,vec d are non-coplanar vectors,then vec d*{vec a xx[vec b xx(vec c xxvec d)]} is equal to

Let vec a, vec b and vec c, are non-coplianar vectors such that [(vec a xxvec b) * vec c] = | vec a || vec b || vec c | then

vec a, vec b, vec c, dare any four vectors then (vec a xxvec b) xx (vec c xxvec d) is a vector Perpendicular to vec a, vec b, vec c, vec d

[vec a + vec b, vec b + vec r * vec cvec c + vec a] = 2 [vec with bvec c]

If vec a, vec b and vec c are non coplaner vectors such that vec b xxvec c = vec a, vec c xxvec a = vec b and vec a xxvec b = vec c then | vec a + vec b + vec c | =

vec a, vec b, vec c are non-coplanar vectors, express vec a xx (vec b xxvec c) as a linear combination of vec a, vec b, vec c

The vectors vec a xx (vec b xxvec c), vec b xx (vec c xxvec a) and vec c xx (vec a xxvec b) are

The vectors vec a xx (vec b xxvec c), vec b xx (vec c xxvec a), vec c xx (vec a xxvec b) are

[vec a xx (3vec b + 2vec c), vec b xx (vec c-2vec a), 2vec c xx (vec a-3vec b)]