Home
Class 11
MATHS
The area of the triangle formed by the ...

The area of the triangle formed by the points `(a,a^(2)),(b,b^(2)),(c,c^(2))` in square units is
`(1)/(2)|(a+b)(b+c)(c+a)|`
`(1)/(2)|(a+b+c)abc|`
`1/2|(a-b)(b-c)(c-a)|`

Promotional Banner

Similar Questions

Explore conceptually related problems

The area of triangle formed by the vertices (a,(1)/(a)),(b,(1)/(b)) and (c,(1)/(c)) iS (a+b+c)/(abc) |((a-b)(b-c)(c-a))/(2abc)| (abc)/(a+b+c) (1)/(2)(a^(2)+b^(2)+c^(2))

The area of the triangle formed by (a,b+c),(b,c+a) and (c,a+b) is a+b+c( b) abc(a+b+c)^(2)(d)0

Prove that |(1,a,a^2),(1,b,b^2),(1,c,c^2)|=(a-b)(b-c)(c-a)

Show that |(1,1,1), (a,b,c),(a^2,b^2,c^2)|=(a-b)(b-c)(c-a)

Value of |(1,a,a^2),(1,b,b^2),(1,c,c^2)| is (A) (a-b)(b-c)(c-a) (B) (a^2-b^2)(b^2-c^2)(c^2-a^2) (C) (a-b+c)(b-c+a)(c+a-b) (D) none of these

|[a^(2), b^(2), c^(2)], [(a+1)^(2), (b+1)^(2), (c+1)^(2)], [(a-1)^(2), (b-1)^(2), (c-1)^(2)]| =-4(a-b)(b-c)(c-a)

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

Delta ABC;(b-c)(cot A)/(2)+(c-a)(cot B)/(2)+(a-b)(cot C)/(2)

For any triangle ABC, prove that (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))