Home
Class 11
MATHS
Let bar(a)=hat j-hat k and bar(c)=hat i-...

Let `bar(a)=hat j-hat k` and `bar(c)=hat i-hat j-hat k` then the vector `bar(b)` satisfying `bar(a)timesbar(b)+bar(c)=0` and `bar(a).bar(b)=3` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(P)=hat i+hat j+hat k,bar(Q)=2hat i-hat j-hat k , then bar(P)-bar(Q) is

Let bar(a)=3hat i+2hat j+2hat k , bar(b)=hat i+2hat j-2hat k .Then a unit vector perpendicular to both bar(a)-bar(b) and bar(a)+bar(b) is

Let vec a=hat j-hat k and vec c=hat i-hat j-hat k. Then the vector b satisfying vec axvec b+vec c=0 and vec a*vec b=3, is

Let bar(a)=3hat i+2hat j+2hat k,bar(b)=hat i+2hat j-2hat k Then a unit vector perpendicular to both bar(a)-bar(b) and bar(a)+bar(b) is

If bar(a)=3hat i-3hat j-4hat k, bar(b)=hat i+2hat j+hat k and bar(c)=3hat i-hat j-2hat k , then [bar(a) bar(b) bar(c)] =

If bar(a)=hat i+2hat j-hat k and bar(b)=3hat i+hat j-5hat k find a unit vector in a direction parallel to vector (bar(a)-bar(b))

Let bar(u)=hat i+hat j, bar(v)=hat i-hat j,bar(w)=hat i+2hat j+3hat k , n unit vector such that bar(u).bar(n)=0,bar(v).bar(n)=0 then |bar(w).bar(n)| =

If bar(a)=2hat i-hat j+2hat k then the value of |bar(a)timeshat i|^(2)+|bar(a)timeshat j|^(2)+|bar(a)timeshat k|^(2)=

If bar a=hat i+hat j-4hat k and bar(b)=hat 4i-hat j-2hat k then find (i) a unit vector in the direction of the vector (2bar(a)-bar(b))

If bar(a)=(1)/(sqrt(10))(3hat(i)+hat(k)) and bar(b)=(1)/(7)(2hat(i)+3hat(j)-6hat(k)) then the value of (2bar(a)-bar(b)*((bar(a)timesbar(b))times(bar(a)+2bar(b))} is equal to